专家详情
姓名 张廷军 学科 自然地理学
性别 出生年月
单位 兰州大学资源环境学院 Email tjzhang@lzu.edu.cn
地址 最高学位
职称 教授 职务
专家介绍

于1993年在美国阿拉斯加大学地球物理研究所获地球物理学博士学位,1993-1995在地球物理所做博士后,在科罗拉多大学任研究员(1996-2005)和资深研究员(2006-至今)。

2008年当选为美国NOAA和科罗拉多大学综合环境科学研究院(CIRES)院士(Fellow)。兰州大学国家“千人计划”特聘教授,博士生导师。

担任欧洲地球物理学会(EGU)《The?Cryosphere》编辑,美国地球物理学会(AGU)《Journal?of?Geophysical?Research?–?Earth?Surface》副编辑,以及美国《Cold?Regions?Science?and?Technology》、?中国《Sciences?in?Cold?and?Arid?Regions》,《冰川冻土》和《气候变化研究进展》等学术杂志编委,曾担任美国AGU?《Journal?of?Geophysical?Research》、?美国《Arctic,?Antarctic,?and?Alpine?Research》、及《Cold?Regions?Science?and?Technology》客座主编。

研究方向 1)?雪、冰和冻土(包括多年冻土和季节冻土)
2)?寒区陆面过程与气候变化
3)?土壤温度和湿度
4)?有孔介质的热量及质量传输
5)?冰冻圈与水文及碳循环之间的相互作用及反馈效应
6)?地球物理现象的数值模拟及其与观测资料的对比研究
7)?应用卫星遥感数据研究冰、雪及地表土壤冻融过程及寒区冰缘现象。?
研究项目 (1) 主持人,“北美地区土壤冻融对碳循环的作用”(Impacts of Soil Freeze/Thaw Dynamics on the North American Carbon Cycle),由美国航空航天署(NASA)资助,2006年8月15日至 2011年8月14日;

(2)主持人,“西伯利亚极地及亚极地地区多年冻土变化研究”(Documenting Changes in Permafrost over Siberian Arctic and Subarctic),由阿拉斯加大学国际极地研究中心资助,2008年7月1日至 2012年6月30日;

(3)合作主持人,“国际极地年(IPY)联合研究:负温下微生物过程及其对冻土中生物地球化学过程的影响”(IPY Collaborative Research: Microbial subzero activity and its impact on biogeochemical processes in frozen tundra and permafrost),美国国家科学基金会资助,2008年1月至2011年12月;

(4) 主持人,“地区、区域和全球规模的土壤冻融循环研究”(Freeze-thaw cycle of soils at local-, regional-, and global-scales),由航空航天署(NASA)资助,2003年9月1日至2009年9月30日;

(5) 合作主持人,“联合研究:多年冻土模型对比研究”(Collaborative Research: Permafrost model comparison study),则美国科学基金会(NSF)资助,2004年3月 至2009年2月。
学术成就 自1982年以来,张廷军博士先后发表学术论文及书评140余篇,其中100多篇发表于国际SCI的学术杂志上。突出成果包括:

1)冻土分布:系统地研究了北半球多年冻土及地下冰分布特征,发现多年冻土区约占24%的北半球陆地面积,超饱和地下冰水当量约为10cm的等量海面变化值。应用卫星及数值模拟,首次系统地提示了北半球季节冻土的分布及其变化,该数据被广泛应用为全球权威参考值,有关论文被联合国气象组织的政府间全球气候变化(IPCC)第三次(2001)及第四次(2007)评估报告引用。他的论文《北半球多年冻土分布特征》一文被国际《极地地理》杂志评为30年来引用次数最高论文之一,并于2009年将此文在该杂志重新全文发表。

2)冻土与气候变化:自二十世纪以来,极地地区多年冻土表面温度升高了约2-7℃,然而同时期气温变化只有约1℃左右。因而对造成极地地区多年冻土升温的主要原因在国际冻土界引起了广泛的重视。张廷军博士首先提出季节性积雪的变化是造成极地地区多年冻土升温的主要原因。自1993年以来,他先后在这方面发表学术论文10余篇,其成果受到国内外同行的广泛重视。美国地球物理学会最权威性杂志《地球物理综述》(Reviewers?of?Geophysics)主编于2004年特邀张廷军博士撰写有关冻土与积雪方面的论文。“季节性积雪对土壤温度场的影响”一文与2005年在该杂志发表并被广泛应用。鉴于张廷军博士在冻土与气候变化方面的研究成果,美国航空航天署(NASA)及国家科学基金委员会(NSF)同时推荐他为国际政府间气候变化(IPCC)第四次评估报告的主要执笔者。

3)冻土与碳循环:张廷军博士及他的研究团队提出由于气候变暖,多年冻土退化,极地多年冻土地区在未来几十年内将从目前的碳汇区变成碳源区。虽然气候变暖,冻土活动层变厚,植物生长期延长,有利于植物生长,促进极地土壤的碳汇作用。但同时保留在多年冻土中的古代碳将参与地球~大气间的碳循环,多年冻土中的古代碳将释放于大气,其总量将于未来几十年内超过同期的土壤碳汇作用,使极地地区成为大气的碳源,进一步增加大气中的碳含量,对全球变化起到正反馈效应。

4)冻土与水循环:应用卫星遥感资料及有关实地观测,张廷军博士及他的研究团队提供了大量的冻土时空分面资料,为流域及区域水循环评估及水文模型提供数据。同时,对西伯利亚多年冻土区自上个世纪三十年代以来河流流量增加的原因提出了新的解释。他首次提出?西伯利亚多年冻土区地下冰融化水很可能是其河流流量增加的主要原因,并应用有关实地观测资料验证了此观点,为全面掌握及理解极地地区水文循环做出了贡献。

5)土壤季节冻融循环及其与大气间的相互作用:应用实地观测,卫星遥感及数值模拟,张廷军博士对北半球土壤季节冻融进行了系统的研究,编制了北半球30年(1971-2000年)土壤季节冻融逐月平均分布图及其变化,揭示了北半球土壤季节冻结范围在变小。自二十世纪初以来,土壤季节冻结范围减少了约7%,此结果被广泛引用,包括IPCC第四次评估报告。同时发现多年冻土区活动厚度在增加,非多年冻土区季节冻结厚度在减少。首次揭示土壤的季节冻融过程对深层土壤与大气间的热物质交换有去耦作用。土壤中水份季节性相变强度对大气有约3-6个月的记录及反馈效应。这对中长期气候预报有着非常重要的意义,有待进一步研究。
对多年冻土区热融湖泊,湖泊融区,冻土遥感,土壤冻融过程数据模拟,大气及云对区域能量平衡及积雪融化,极地地区气候及其变化,季节性积雪,青藏高原冻土环境变化及其对工程建筑的影响等都有深入地研究。 ?
代表著作
国际学术杂志论文
[1] Yang, Xingguo, Tingjun Zhang, Qin Dahe, Kang Shichang, Qin Xiang, and Liu Hongyi: Seasonal Characteristics of Surface Meteorological and Radiative Fluxes on the East Rongbuk Glacier in the Mt. Qomolangma (Mt. Everest) Region, J. Geophys. Res.,
[2] Wu, Qingbai, Tingjun Zhang, and Y. Liu: Permafrost temperatures and thickness on the Qinghai Tibetan Plateau,Global and Planetary Change . 05/2010; 72:32-38. 
[3] Schaefer, K., Tingjun Zhang, A. G. Slater, L. Lu, A. Etringer, and I. Baker, Improving simulated soil temperatures and soil freeze/thaw at high latitude regions in the SiBCASA model, J. Geophys. Res.,
[4] Zhang, Tingjun, Rui Jin, and Feng Gao. Overview of satellite remote sensing of surface soil freezing and thawing, I: Visible and active microwave sensors, Journal of Remote Sensing and Environments,
[5] Zhang, Tingjun, Rui Jin, and Feng Gao, Overview of satellite remote sensing of surface soil freezing and thawing, II: Passive microwave sensors, Journal of Remote Sensing and Environments
[6] Ma, L., T. Zhang, O. W. Frauenfeld, B. Ye, D. Yang, and D. Qin (2009), Evaluation of precipitation from the ERA-40,NCEP-1, and NCEP-2 Reanalyses and CMAP-1, CMAP-2, and GPCP-2 with ground-based measurements in China, J. Geophys. Res., 114, D09105

[7] Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A. and Brown, J. (2008): 'Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere', Polar Geography,31:1,47 – 68.
[8] Wu, Q., and Tingjun Zhang (2008), Recent permafrost warming on the Qinghai-Tibetan Plateau, J. Geophys. Res., 113, D13108
[9] Ma, Lijuan, Tingjun Zhang, Qingxiang Li, O. W. Frauenfeld, and Dahe Qing (2008). Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air temperatures with ground-based measurements in China, J. Geophys. Res., 113, D15115
[10] Wu, Q., Zijian Lu, Tingjun Zhang, Wei Ma, and Yongzhi Liu (2008): Analysis of cooling effect of crushed rock embankment of the Qinghai-Xizang Railway, Cold Regions Science and Technology, 53(3), 271-282.

[11] Zhang, Tingjun, Barry Baker, and Guodong Cheng (2008), Qinghai-Xizang Railway – A new milestone project in permafrost regions, Cold Regions Science and Technology, 53(3), 229-240.
[12] Che, Tao, Xin Li, Rui Jin, Richard Armstrong, and Tingjun Zhang (2008), Snow depth derived from passive microwave remote-sensing data in China, Annals of Glaciology, 49, 145-154.
[13] Zhang, Tingjun and Daqing Yang (2008), Tribute: A Legendary Glaciologist: Academician Shi Yafeng on his Ninetieth Birthday, Arctic, Antarctic, and Alpine Research
[14] Bojariu, R.; Garcia-Herrera, R.; Gimeno, L.; Zhang, T.; Frauenfeld, O. W., 2008: Cryosphere-atmosphere interaction related to NAO variability and change. In Trends and Directions in Climate Research: Ann. N.Y. Acad. Sci. 1146: 50–59 (2008).

[15] Parsons, M. A.; Smith, S. L.; Romanovsky, V. E.; Shiklomanov, N. I.; Christiansen, H. H.; Overduin, P. P.; Zhang, T.; Balks, M. R.; Brown J.; 2008: Managing Permafrost Data: Past Approaches and Future Directions. Proc. Ninth International Conference on Permafrost, 2(6), 1369–1374.
[16] PaiMazumder, D., J. Miller, Z. Li, J. E. Walsh, A. Etringer, J. McCreight, T. Zhang, and N. Molders, Evaluation of Community Climate System Model soil temperatures using observations from Russia, Theor. Appl. Climatol. (2008)
[17] White, D., Larry Hinzman, Lilian Alessa, John Cassano, Molly Chambers, Kelly Falkner, Jennifer Francis, William J. Gutowski Jr., Marika Holland, R. Max Holmes, Henry Huntington, Douglas Kane, Andrew Kliskey, Craig Lee, James McClelland, Bruce Peterson, T. Scott Rupp, Fiamma Straneo, Michael Steele, Rebecca Woodgate, Daqing Yang, Kenji Yoshikawa, and Tingjun Zhang,The arctic freshwater system: Changes and impacts, J. Geophys. Res., 112, G04S54
[18] Fan, G., Tingjun Zhang, Jinjun Ji, Kerang Li, and Jiyuan Liu, 2007: Numerical simulation of the carbon cycle over the Tibetan Plateau, China, Arctic, Antarctic, and Alpine Research, 39(4), 723-732.
[19] Lemke, P., J. Ren, R.B. Alley, I Allison, J. Carrasco, G. Flato, Y. Fujii, G. Kaser, P. Mote, R.H. Thomas and T. Zhang, 2007: Observations: Changes in Snow, Ice and Frozen Ground. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
[20] Scheafer, K., T. Zhang, P. Tans, and R. Stockli, Soil temperature reemergence in seasonally frozen ground regions, J. Geophysi. Res., 112, D20102
[21] Ling, F. and T. Zhang, Modeled impacts of changes in tundra snow thickness on ground thermal regime and heat flow to the atmosphere in Northernmost Alaska, Global and Planetary Change, 57(2007), 235-246.
[22] Anisimov, O.A., V. Lobanov, S. Reneva, N. Shiklomanov, T. Zhang, and F. Nelson (2007), Uncertainties in gridded air temperature fields and effects on predictive active layer modeling, J. Geophys. Res., 112, F02S14
[23] Zhang, T., F. Nelson, and S. Gruber (2007), Introduction to Special Section: Permafrost and seasonally frozen ground under a changing climate, J. Geophys. Res., 112, F02S01
[24] Oelke, C. and T. Zhang, 2007: Modeling the soil thermal regime of the Tibetan Plateau, Arctic, Antarctic, and Alpine Reseaerch, 39(4), 714-722.
[25] Saito, K., M. Kimoto, T. Zhang, K. Takata, S. Emori (2007), Changes in hydro-thermal regimes in frozen ground regions under global warming scenarios simulated by a high-resolution climate model, J. Geophys. Res., 112, F02S11
[26] Shiklomanov, N. I., O. A. Anisimov, T. Zhang, S. Marchenko, F. Nelson, and C. Oelke (2007), Analysis of model-produced permafrost active layer fields: Results for northern Alaska, J. Geophys. Res., 112, F02S10
[27] Zhang, T., 2007: Perspectives on environmental study of response to climatic and land use and land cover change over the Qinghai-Tibetan Plateau: An introduction, Arctic, Antarctic, and Alpine Research, 39(4), 631-634.
[28] Duo Chu, Lixin Lu, and T. Zhang, 2007: Sensitivity of NDVI to Seasonal and Inter-annual Climate Conditions in Lhasa area, Tibetan Plateau, Arctic, Antarctic, and Alpine Research 39(4), 635-641.
[29] Frauenfeld, Oliver W., T. Zhang, and James McCreight, 2006. Climatology and variability of Northern Hemisphere Freezing/Thing Index in the 20th Century, International Journal of Climatology, 27(1), 47-63
[30] Chudinova, S. M., O. W. Frauenfeld, R. G. Barry, T. Zhang, and V. A. Sorokvikov, 2006. Relationship between air and soil temperature trends and periodicities in the permafrost regions of Russia, J. Geophys. Res., 111, F02008
[31] Ling, F. and T. Zhang, 2006: Sensitivity of ground thermal regime and surface energy fluxes to tundra snow density in northern Alaska, Cold Regions Science and Technology, 42(2), 121-130.
[32] Zhang, T., 2005. Influence of the seasonal snow cover on the ground thermal regime: An overview, Reviews of Geophysics, 43, RG4002
[33] Zhang, T., O. W. Frauenfeld, M. C. Serreze, A. Etringer, C. Oelke, J. McCreight, R. G. Barry, D. Gilichinsky, D. Yang, H. Ye, F. Ling, and S. Chudinova, 2005: Spatial and temporal variability of active layer thickness over the Russian Arctic drainage basin, J. Geophys. Res., 110, D16101
[34] Frauenfeld, O. W., T. Zhang, and M. C. Serreze (2005), Climate change and variability using European Center for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau, J. Geophys. Res., 110, D02101
[35] Oelke, C., T. Zhang, and M. C. Serreze, 2004: Modeling evidence for recent warming of the Arctic soil thermal regime, Geophysics Research Letters, 31, L07208
[36] Frauenfeld, O., T. Zhang, Roger G. Barry, and David G. Gilichinsky, Interdecadal changes in seasonal freeze and thaw depths in Russia, J. Geophys. Res, 109, D05101
[37] Ling, F. and T. Zhang, Numerical simulation of talik freeze-up and permafrost response under drained thaw lakes on the Alaksan Arctic Coastal Plain, J. Geophys. Res., 109, D01111
[38] Zhang, T., R. L. Armstrong, and Jeff. Smith, 2003. Investigation of the near-surface soil freeze/thaw cycle in the contiguous United States: Algorithm development and validation, J. Geophys. Res., 108(D22), 8860
[39] ?Ye, Hengchun, D. Yang, X. Zhang, and T. Zhang: Connections of Yenisei River discharge to sea surface temperatures, sea ice, and atmospheric circulation, Journal of Geophysical Research – Atmosphere, 108(D24), 4776
[40] Modelling Open-Talik Formation and Permafrost Lateral Thaw under a Thermokarst Lake, Beiluhe Basin, Qinghai-Tibet Plateau
[41] Stable carbon isotopes as indicators for permafrost carbon vulnerability in upper reach of Heihe River basin, northwestern China
[42]  An observational 71-year history of seasonally frozen ground changes in the Eurasian high latitudes