地球科学进展  2015, Vol.30 Issue (8): 847-854  DOI:10.11867/j.issn.1001-8166.2015.08.0847
登陆台风精细结构的观测、预报与影响评估
中国气象科学研究院 灾害天气国家重点实验室,北京 100081
Monitoring and Forecasting of Finescale Structure and Impact Assessment of Landfalling Typhoons
State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China

摘要

2015年立项的国家重点基础研究发展计划项目(973计划)“登陆台风精细结构的观测、预报与影响评估”将通过进行登陆台风精细结构的野外科学试验,开展登陆台风精细结构的多源资料分析理论和方法研究,探索登陆台风精细化结构演变规律及其对风雨分布的影响机理,发展高分辨率台风数值预报模式关键技术,开展台风灾害影响(预)评估方法研究等,揭示环境因子及其自身内部的多尺度系统相互作用如何影响登陆台风精细化结构的演变,以及精细结构的演变如何影响台风风雨强度和分布,力争提高登陆台风精细结构的模拟、预报和影响评估能力。

Abstract

The National Basic Research Program of China entitled “monitoring and forecasting of finescale structure and impact assessment of landfalling typhoons” was approved in 2015. Field experiments will be conducted in this program to obtain observational data of finescale structures in typhoons, and analysis theory and methods of multi-source data will be studied. This program will reveal the characteristics of finescale structures and their effects on typhoon winds and rainfall. Key technique in high-resolution numerical typhoon models will be developed, and methods of typhoon-related disaster predictions and assessments will also be investigated. The research in the program aims at revealing how environments and internal multiscale interactions affect finescale structures of landfalling typhoons and how behavior of finescale structures affects the intensity and distribution of typhoon-induced rainfall. In addition, improvement of the skill of numerical modeling and forecasting of finescale structures and impact assessments of landfalling typhoons is expected to be made through the program.
收稿日期:2015-05-15

基金资助

国家重点基础研究发展计划项目“登陆台风精细结构的观测、预报与影响评估”(编号:2015CB452800)资助

引用本文

[中文]
端义宏. 登陆台风精细结构的观测、预报与影响评估[J]. 地球科学进展, 2015, 30(8): 847-854.
[英文]
Duan Yihong. Monitoring and Forecasting of Finescale Structure and Impact Assessment of Landfalling Typhoons[J]. Advance in Earth Science, 2015, 30(8): 847-854.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Marks F D. Advancing tropical cyclone forecasts using aircraft observations[M]∥Monitoring and Prediction of Tropical Cyclones in the Indian Ocean and Climate Change. Netherlands: Springer, 2014.
[2]
Zhu P, Zhang J A, Masters F J. Wavelet analyses of turbulence in the hurricane surface layer during landfalls[J]. Journal of the Atmospheric Sciences, 2010, 67(12): 3 793-3 805.
[3]
Hirth B, Schroeder J, Weiss C, et al. Research radar analyses of the internal boundary layer over Cape Canaveral, Florida, during the landfall of Hurricane Frances (2004)[J]. Weather and Forecasting, 2012, 27(6): 1 349-1 372.
[4]
Lei Xiaotu. Progress of unmanned aerial vehicles and its application in the detection of tropical cyclone[J]. Advances in Earth Science,2015, 30(2): 276-283.[雷小途. 无人飞机在台风探测中的应用进展[J]. 地球科学进展, 2015, 30(2): 276-283.]
[5]
Rogers R, Aberson S, Black M, et al. The intensity forecasting experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts[J]. Bulletin of the American Meteorological Society, 2006, 87(11): 1 523-1 537.
[6]
Houze R A, Chen S S, Lee W C, et al. The hurricane rainband and intensity change experiment[J]. Bulletin of the American Meteorological Society, 2006, 87(11): 1 503-1 521.
[7]
Elsberry R L, Harr P A. Tropical Cyclone Structure (TCS08) field experiment science basis, observational platforms, and strategy[J]. Asia-Pacific Journal of Atmospheric Sciences,2008,44(3): 209-231.
[8]
Rogers R, Lorsolo S, Reasor P, et al. Multiscale analysis of tropical cyclone kinematic structure from airborne Doppler radar composites[J]. Monthly Weather Review, 2012, 140(1): 77-99.
[9]
Montgomery M T, Kallenbach R J. A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes[J]. Quarterly Journal of the Royal Meteorological Society, 1997, 123(538): 435-465.
[10]
Wu L, Ni Z, Duan J, et al. Sudden tropical cyclone track changes over the western North Pacific: A composite study[J]. Monthly Weather Review, 2013, 141(8): 2 597-2 610.
[11]
Murata A. Precipitation efficiency in numerically simulated orographic rainfall associated with typhoon Meari (2004)[J]. CASJSC WGNE Research Activities in Atmospheric and Oceanic Modelling, 2007, 37: 5-17.
[12]
Atallah E, Bosart L F, Aiyyer A R. Precipitation distribution associated with landfalling tropical cyclones over the eastern United States[J]. Monthly Weather Review, 2007, 135(6): 2 185-2 206.
[13]
Chen S, Zhao W, Donelan M A, et al. Directional wind-wave coupling in fully coupled atmosphere-wave-ocean models: Results from CBLAST-hurricane[J]. Journal of the Atmospheric Sciences, 2013, 70(10): 3 198-3 215.
[14]
Rotunno R, Chen Y, Wang W, et al. Large-eddy simulation of an idealized tropical cyclone[J]. Bulletin of the American Meteorological Society, 2009, 90(12): 1 783-1 788.
[15]
Zhang F, Li J. Doubling-adding method for delta-four-stream spherical harmonic expansion approximation in radiative transfer parameterization[J]. Journal of the Atmospheric Sciences, 2013, 70(10): 3 084-3 101.
[16]
Tong M, Xue M. Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part I: Sensitivity analysis and parameter identifiability[J]. Monthly Weather Review, 2008, 136(5): 1 630-1 648.
[17]
Katz R W. Stochastic modeling of hurricane damage[J]. Journal of Applied Meteorology and Climatology, 2002, 41(7): 754-762.
[18]
Emanuel K, Sai R, Emmanuel V, et al. A statistical deterministic approach to hurricane risk assessment[J]. Bulletin of the American Meteorological Society, 2006, 87(3): 299-314.
[19]
Hallegatte S. The use of synthetic hurricane tracks in risk analysis and climate change damage assessment[J]. Journal of Applied Meteorology and Climatology, 2007, 46(11): 1 956-1 966.
[20]
Chen Dake, Lei Xiaotu, Wang Wei, et al. Upper ocean response and feedback mechanisms to typhoon[J]. Advances in Earth Science, 2013, 28(10): 1 077-1 086.[陈大可,雷小途,王伟,等. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 2013, 28(10): 1 077-1 086.]
[21]
Duan Yihong, Chen Lianshou, Liang Jianyin, et al. Research progress in the unusual variations of typhoons before and after landfalling[J]. Acta Meteorologica Sinica, 2014, 72(5): 969-986.[端义宏,陈联寿,梁建茵,等.台风登陆前后异常变化的研究进展[J].气象学报, 2014,72(5):969-986.]
[22]
Zhao Zhongkuo, Liang Jianyin, Wan Qilin, et al. Observational analysis of air-sea momentum exchange in strong wind condition[J]. Journal of Tropical Meteorology, 2011, 27(6): 899-904.[赵中阔,梁建茵,万齐林,等. 强风天气条件下海气动量交换参数的观测分析[J]. 热带气象学报, 2011, 27(6): 899-904.]
[23]
Zhao K, Xue M, Lee W-C. Assimilation of GBVTD-retrieved winds from single-Doppler radar for short-term forecasting of Super Typhoon Saomai (0608) at landfall[J]. Quarterly Journal of the Royal Meteorological Society, 2012, 138(665): 1 055-1 071.
[24]
Li X, Ming J, Wang Y, et al. Assimilation of T-TREC-retrieved wind data with WRF 3DVAR for the short-term forecasting of Typhoon Meranti (2010) near landfall[J]. Journal of Geophysical Research: Atmospheres, 2013, 118: 10 361-10 375.
[25]
Zhuge X, Yu F, Zhang C. Rainfall retrieval and nowcasting based on multispectral satellite images. Part I: Retrieval study on daytime 10-minute rain rate[J]. Journal of Hydrometeorology, 2011, 12(6): 1 255-1 270.
[26]
Yu F, Zhuge X, Zhang C. Rainfall retrieval and nowcasting based on multispectral satellite images. Part II: Retrieval study on daytime half-hour rain rate[J]. Journal of Hydrometeorology, 2011, 12(6): 1 271-1 285.
[27]
Xu X, Peng S, Yang X, et al. Does warmer China land attract more super typhoons ?[J]. Scientific Reports, 2013, 3: 1 522.
[28]
Xu Hongxiong, Xu Xiangde, Chen Bin, et al. The structure change and energy moisture transport physical image in the development and decay processes of Binary typhoon vortices[J]. Acta Meteorologica Sinica, 2013, 71(5): 825-838.[徐洪雄,徐祥德,陈斌,等.双台风生消过程涡旋能量、水汽输送相互影响的三维物理图像[J].气象学报,2013,71(5):825-838.]
[29]
Meng Z, Zhang Y. On the squall lines preceding landfalling tropical cyclones in China[J]. Monthly Weather Review, 2012, 140(2): 445-470.
[30]
Chen L, Li Y, Cheng Z. An overview of research and forecasting on rainfall associated with landfalling tropical cyclones[J]. Advances in Atmospheric Sciences, 2010, 27(5): 967-976.
[31]
Zhong W, Zhang D L, Lu H C. A theory for mixed vortex Rossby-gravity waves in tropical cyclones[J]. Journal of the Atmospheric Sciences, 2009, 66(11): 3 366-3 381.
[32]
Xin Q, Tan Z M, Xiao Q. The roles of vortex Rossby waves in hurricane secondary eyewall formation[J]. Monthly Weather Review, 2010, 138(6): 2 092-2 109.
[33]
Qiu X, Tan Z M. The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation[J]. Journal of the Atmospheric Sciences, 2013, 70(3): 953-974.
[34]
Sun Y, Jiang Y, Tan B, et al. The governing dynamics of the secondary eyewall formation of Typhoon Sinlaku (2008)[J]. Journal of the Atmospheric Sciences, 2013, 70(12): 3 818-3 837.
[35]
Dong M, Chen L, Li Y, et al. Rainfall reinforcement associated with landfalling tropical cyclones[J]. Journal of the Atmospheric Sciences, 2010, 67(11): 3 541-3 558.
[36]
Yu Z, Wang Y, Xu H. Observed rainfall asymmetry in tropical cyclones making landfall over China[J]. Journal of Applied Meteorology and Climatology, 2015, 54(1): 117-136.
[37]
Li Q, Wang Y. A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone[J]. Monthly Weather Review, 2012, 140(9): 2 782-2 805.
[38]
Li Q, Wang Y. Formation and quasi-periodic behavior of outer spiral rainbands in a numerically simulated tropical cyclone[J]. Journal of the Atmospheric Sciences, 2012, 69(3): 997-1 020.
[39]
Liu J, Yang S, Ma L, et al. An initialization scheme for tropical cyclone numerical prediction by enhancing humidity in deep-convection region[J]. Journal of Applied Meteorology and Climatology, 2013, 52(10): 2 260-2 277.
[40]
Ma L, Tan Z M. Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger[J]. Atmospheric Research, 2009, 92(2): 190-211.
数据正在加载中...