地球科学进展  2015, Vol.30 Issue (8): 915-921  DOI:10.11867/j.issn.1001-8166.2015.08.0915
青藏地区地应力分布规律研究
1. 兰州交通大学 甘肃省道路桥梁与地下工程重点实验室,甘肃 兰州 730070; 2. 兰州交通大学 土木工程学院,甘肃 兰州 730070; 3. 西北民族大学 土木工程学院,甘肃 兰州730030
Study on Distribution Rule of Geostress in Qinghai-Tibet Area
1. Key Laboratory of Road & Bridges and Underground Engineering of Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China; 2. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; 3. School of Civil Engineering, Northwest University for Nationalities, Lanzhou, 730030, China

摘要

在中国地应力分布规律统计分析基础上,通过收集200条青藏地区地壳浅层地应力实测结果,首次统计得到我国青藏地区平均水平地应力与垂直地应力的比值随深度变化的分布曲线,并建立了回归方程。进而分析青藏地区地应力分布规律与特点,发现青藏地区地应力具有总体上符合全国地应力规律,其区域地应力受挤压构造作用显著的特点,尤其是岩浆岩中构造应力显著。研究结果对青藏地区地应力的规律性研究具有重要参考价值,对青藏地区地下工程项目勘察设计、结构分析和工程建设具有重要的实用价值。

Abstract

The distribution curve of the Ratios of the Average Horizontal Geostress and the Vertical Geostresses(RAHVG) varying with depth and regression equation were obtained in Qinghai-Tibet area of China for the first time by collecting and analyzing 200 in-situ measured geostress results based on the analysis of distribution rule of geostress in China. Then the geostress distribution rule and the characteristics were analyzed, and it is found that the geostress in Qinghai-Tibet area conforms to the geostress distribution rule in China, but the geostress in Qinghai-Tibet area is significantly subjected to tectonic squeezing and the tectonic geostress is very obvious in magmatic rock. The RAHVG of the magmatic rock varying with depth in Qinghai-Tibet area is significantly greater than that in China between the depth of 100 m and 800 m. It shows that the stress of the magmatic rock in Qinghai-Tibet area is significantly subjected to squeezing tectonic. The RAHVG of the sedimentary rock varying with depth in Qinghai-Tibet area is basically consistent with that in China, but the value in Qinghai-Tibet area is greater. It shows that the stress of the sedimentary rock in Qinghai-Tibet area is not significantly subjected to squeezing tectonic. The RAHVG of the metamorphic rock varying with depth in Qinghai-Tibet area is significantly greater than that in China. It shows that the stress of the metamorphic rock in Qinghai-Tibet area is subjected to squeezing tectonic in some degree. This study can provide references to the study of distribution characteristics of geostress in Qinghai-Tibet area. It also has important practical value for underground engineering survey, design, structural analysis and construction in Qinghai-Tibet area.
收稿日期:2015-03-30

基金资助

甘肃省财政厅基本科研业务费项目“高地应力软岩隧道模型试验和应力释放规律研究”(编号:214143); 兰州交通大学青年基金项目“高地应力软岩隧道衬砌压力研究”(编号:2012025)资助

引用本文

[中文]
陈志敏, 严松宏, 赵德安, 余云燕. 青藏地区地应力分布规律研究[J]. 地球科学进展, 2015, 30(8): 915-921.
[英文]
Chen Zhimin, Yan Songhong, Zhao Dean, Yu Yunyan. Study on Distribution Rule of Geostress in Qinghai-Tibet Area[J]. Advance in Earth Science, 2015, 30(8): 915-921.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
图1. 青藏地区平均水平地应力与垂直地应力比值及其内外包线随深度变化曲线
Fig.1 RAHVG curve and the maximum envelope curve as well as the minimum envelope curve varying with depth in Qinghai-Tibet area
图6. 青藏地区沉积岩平均水平地应力与垂直地应力比值中线与全国沉积岩中线比较
Fig.6 Comparison of RAHVG curve of the sedimentary rock varying with depth in Qinghai-Tibet area and China
图8. 青藏地区变质岩平均水平地应力与垂直地应力比值中线与全国变质岩中线比较
Fig.8 Comparison of RAHVG curve of the metamorphic rock varying with depth in Qinghai-Tibet area and China
图2. 青藏平均水平地应力与垂直地应力比值中线与全国中线比较
Fig.2 Comparison of RAHVG curves varying with depth in Qinghai-Tibet area and China
图4. 青藏地区岩浆岩平均水平地应力与垂直地应力比值中线与全国岩浆岩中线比较
Fig.4 Comparison of RAHVG curve of the magmatic rock varying with depth in Qinghai-Tibet area and China
图7. 青藏地区变质岩平均水平地应力与垂直地应力比值及内外包线随深度变化规律
Fig.7 RAHVG curve and the maximum envelope curve as well as the minimum envelope curve of the metamorphic rock varying with depth in Qinghai-Tibet area
图9. 我国内外包线和青藏地区内外包线和三大岩类平均水平地应力与垂直地应力比值随深度变化规律
Fig.9 RAHVG curves and the maximum envelope curves as well as the minimum envelope curves of three main kinds of rock in Qinghai-Tibet area and the maximum envelope curve and the minimum envelope curve in China
图5. 青藏地区沉积岩平均水平地应力与垂直地应力比值及内外包线随深度变化规律
Fig.5 RAHVG curve and the maximum envelope curve as well as the minimum envelope curve of the sedimentary rock varying with depth in Qinghai-tibet area
图3. 青藏地区岩浆岩平均水平地应力与垂直地应力比值及内外包线随深度变化规律
Fig.3 RAHVG curve and the maximum envelope curve as well as the minimum envelope curve of the magmatic rock varying with depth in Qinghai-tibet area
[1]
Zhao Dean, Chen Zhimin, Cai Xiaolin, et al. Analysis of distribution rule of geostress in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1 265-1 271.[赵德安, 陈志敏, 蔡小林, 等. 中国地应力场分布规律统计分析[J]. 岩石力学与工程学报, 2007, 26(6): 1 265-1 271.]
[2]
Ding Jianmin, Gao Liqing. Horizontal geostress and vertical geostress varying with depth crustal[J]. Earthquake, 1981, (2):46-48.[丁健民, 高莉青. 地壳水平应力与垂直应力随深度的变化[J]. 地震, 1981, (2):46-48.]
[3]
Jing Feng, Sheng Qian, Zhang Yonghui, et al. Study advance on in-site geostress measurement and analysis of initial geostress field in China[J]. Rock and Soil Mechanics, 2011, 32(Suppl. 2): 51-58.[景锋, 盛谦, 张勇慧, 等. 我国原位地应力测量与地应力场分析研究进展[J]. 岩土力学, 2011, 32(增刊2):51-58.]
[4]
Brown E T, Hoek E. Technical note trends in relationships between measured in-situ stress and depth[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(4):211-215.
[5]
Mccutchen W R. Some element of a theory for in-situ stress[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1982, 19(6): 201-203.
[6]
Haimson B C, Rummel F. Hydrofracturing stress measurements in the iceland research drilling project drill hole at reydarfjordur, Iceland[J].Journal of Geophysical Research, 1982, 87(B8): 6 631-6 649.
[7]
Zoback M L. First-and second-order patterns of stress in the Lithosphere: The world stress map project[J]. Journal of Geophysical Research, 1992, 97(B8):11 703-11 728.
[8]
Worotniki G, Denham D. The state stress in the upper part of the Earth′s crust in Australia according to measurements in tunnels and mines and from seismic observation[C]∥Investigation of Stress in Rock—Advances in Stress Measurement. Sydney, Australia,1976:71-82.
[9]
Jing Feng, Sheng Qian, Zhang Yonghui, et al. Reasearch on distribution rule of shallow crustal geostres in China Mainland[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(10):2 056-2 061.[景锋, 盛谦, 张勇慧, 等. 中国大陆浅层地壳实测地应力分布规律研究[J]. 岩石力学与工程学报, 2007, 26(10):2 056-2 061.]
[10]
Yu Sheng, Song Changqing. Research results on “Reconstruct the topography of mantle transition zone-and its implication for geodynamics in Tibetan Plateau”[J]. Advances in Earth Science, 2013, 28(10): 1 173- 1 174.[于晟, 宋长青. “地幔过渡带界面起伏3-D重建及其在青藏高原动力学研究中的应用”研究成果介绍[J]. 地球科学进展, 2013, 28(10): 1 173-1 174.]
[11]
Deng Tao, Wang Xiaoming, Wang Shiqi, et al. Evolution of the Chinese neogene mammalian faunas and its relationship to uplift of the Tibetan Plateau[J]. Advances in Earth Science, 2015, 30(4):407-415.[邓涛,王晓鸣,王世骐, 等. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展,2015,30(4):407-415.]
[12]
Zhang Chunshan, Wu Manlu, Liao Chunting, et al. Reasearch on distribution rule of shallow crustal geostres in China mainland[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 50(2):517-522.[张春山, 吴满路, 廖椿庭,等. 西藏羊八井—康马地区现今地应力测量结果与应力状态分析[J]. 地球物理学报, 2007, 50(2):517-522.]
[13]
Xu Yanju. Reasearch on Initial Geostress Field of Gonggala Tunnel[D]. Chongqing: Chongqing Jiaotong University, 2008.[徐彦举. 嘎隆拉隧道初始地应力场的研究[D]. 重庆:重庆交通大学, 2008.]
[14]
Jiao Guofeng. Analysis on crustal stress distribution characteristics in canyon area along lhasa-rikazer railway Line[J]. Shanxi Architecture,2008, 34(5): 169-170.[焦国锋. 拉日线峡谷区地应力分布特征的分析[J]. 山西建筑, 2008, 34(5): 169-170.]
[15]
Zhang Wenzhong. Analysis on characteristics of ground stress in guanjiao tunnel around mountainous area as well as its application[J]. Railway Investigation and Surveying, 2008, (2):52-56.[张文忠. 关角隧道越岭区区域地应力特征分析及应用[J]. 铁道勘察, 2008,(2):52-56.]
数据正在加载中...